CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.
نویسندگان
چکیده
UNLABELLED A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and modeling of multiple/selected reaction monitoring (MRM/SRM) results. BIOLOGICAL SIGNIFICANCE CoreFlow was purposely designed as an environment for programmers to rapidly perform data analysis. These analyses are assembled into project-specific workflows that are readily shared with biologists to guide the next stages of experimentation. Its simple yet powerful interface provides a structure where scripts can be written and tested virtually simultaneously to shorten the life cycle of code development for a particular task. The scripts are exposed at every step so that a user can quickly see the relationships between the data, the assumptions that have been made, and the manipulations that have been performed. Since the scripts use commonly available programming languages, they can easily be transferred to and from other computational environments for debugging or faster processing. This focus on 'on the fly' analysis sets CoreFlow apart from other workflow applications that require wrapping of scripts into particular formats and development of specific user interfaces. Importantly, current and future releases of data analysis scripts in CoreFlow format will be of widespread benefit to the proteomics community, not only for uptake and use in individual labs, but to enable full scrutiny of all analysis steps, thus increasing experimental reproducibility and decreasing errors. This article is part of a Special Issue entitled: Can Proteomics Fill the Gap Between Genomics and Phenotypes?
منابع مشابه
Dynamic Analysis of Offshore Wind Turbine Towers with Fixed Monopile Platform Using the Transfer Matrix Method
In this paper, an analytical method for vibrations analysis of offshore wind turbine towers with fixed monopile platform is presented. For this purpose, various and the most general models including CS, DS and AF models are used for modeling of wind turbine foundation and axial force is modeled as a variable force as well. The required equations for determination of wind turbine tower response ...
متن کاملCost-Benefit Investigation of Offshore Wind Power Generation for Soroush Offshore Complex
Iranian offshore oil and gas platforms are mostly located in the Persian Gulf. Technical and environmental challenges resulted from an off-design running condition of processes on a platform are important issues. The weakness of strategies to stop or decrease the amount of greenhouse gas emission production rate in the Persian Gulf; which is intensively increasing, is another matter of concern....
متن کاملتحلیل ارتعاشات آزاد برج توربین بادی فراساحلی با سکوی ثابت تک شمع
Finite elements method can considerably increases the computational works of free vibration analysis of offshore wind turbine with fixed monopile platform depending on the modeling type of foundation,. In this paper, transfer matrix method is used to reduce computational works and increase the speed of analysis instead of the finite elements method. For this purpose, the wind turbine foundation...
متن کاملPetra, osiris and molinspiration: A computational bioinformatic platform for experimental in vitro antibacterial activity of annulated uracil derivatives
Annulated pyrano[2,3-d]pyrimidine/pyrano[2,3-d]uracil derivatives were synthesized using aromatic aldehydes, active methylene compounds and barbituric acid in presence of dibutylamine (DBA) catalyst in ethanol as solvent. The different substituents on phenyl ring in the fused pyrano uracil skeleton showed productive influence on its antimicrobial activity against some gram positive and gram neg...
متن کاملNumerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid
In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of proteomics
دوره 100 شماره
صفحات -
تاریخ انتشار 2014